6.4.2015 All About Unicode, UTF8 & Character Sets - Smashing Magazine

4 SMASHING

MAGAZINE

All About Unicode, UTF8 & Character Sets
By Paul Tero

Published on June 6th, 2012 in with 60 Comments

This is a story that dates back to the earliest days of computers. The story has
a plot, well, sort of. It has competition and intrigue, as well as traversing
oodles of countries and languages. There is conflict and resolution, and a
happyish ending. But the main focus is the characters — 110,116 of them. By
the end of the story, they will all find their own unique place in this world.

This story (or article, as known on Smashing Magazine) will follow a few of those characters more closely, as
they journey from Web server to browser, and back again. Along the way, you’ll find out more about the
history of characters, character sets, Unicode and UTF-8, and why question marks and odd accented
characters sometimes show up in databases and text files.

Warning: this article contains lots of numbers, including a bit of binary — best approached after your morning

cup of coffee.

ASCIlI

Computers only deal in numbers and not letters, so it’s important that all computers agree on which numbers

represent which letters.

Let’s say my computer used the number 1 for A, 2 for B, 3 for C, etc and yours used O for A, 1 for B, etc. If | sent
you the message HELLO, then the numbers 8, 5, 12, 12, 15 would whiz across the wires. But for you 8 means |,
so you would receive and decode it as IFMMP. To communicate effectively, we would need to agree on a
standard way of encoding the characters.

To this end, in the 1960s the American Standards Association created a 7-bit encoding called the American
Standard Code for Information Interchange (ASCII". In this encoding HELLO is 72, 69, 76, 76, 79 and would be
transmitted digitally as 1001000 1000101 1001100 1001100 1001111. Using 7 bits gives 128 possible values from
0000000 to 111111, so ASCII has enough room for all lower case and upper case Latin letters, along with each
numerical digit, common punctuation marks, spaces, tabs and other control characters. In 1968, US President
Lyndon Johnson made it official? — all computers must use and understand ASCILI.

http://www.smashingmagazine.com/2012/06/06/all-about-unicode-utf8-character-sets/ 117

http://www.smashingmagazine.com/
http://www.smashingmagazine.com/author/paul-tero/
http://en.wikipedia.org/wiki/ASCII
http://www.smashingmagazine.com/2012/06/06/all-about-unicode-utf8-character-sets/
http://www.presidency.ucsb.edu/ws/index.php?pid=28724#axzz1s2VIkMsP

6.4.2015

TRYING IT YOURSELF

All About Unicode, UTF8 & Character Sets - Smashing Magazine

There are plenty of ASCII tables® available, displaying or describing the 128 characters. Or you can make one

of your own with a little bit of CSS, HTML and Javascript, most of which is to get it to display nicely:

<html>
<body>

<style type="text/css">p {float: left; padding: @ 15px; margin: ©; font-size: 80%;}</style

>

<script type="text/javascript">

for (var i=0; i<128; i++) document.writeln ((i%32?'':'<p>') + i + '
de (i) + '
');

</script>
</body>
</html>

This will display a table like this:

0: ¥ 32:
1: B 33: |
2: [34: "
3: 35: #
4 [36: 5
5: [ig 37: %
R 38: &
7: 3 39: "
g: [40: {
9: 41:)
10: A2: *
11: 43: +
12: 44:
13: 45: -
14: [46: .
15: [47|
16: [48: 0
17: [49: 1
18: [i 50: 2
19: [51: 3
20: [52: 4
21: [53: 5
22: [54: 6
23: [55: 7
24: [{ 56: 8
25: [57:9
26: [58: :
27: [59:
28: 60: <
29: Bl: =
30: 62 =
31: T

Do-It-Yourself Javascript ASCII table viewed in Firefox

http://www .smashingmagazine.com/2012/06/06/all-about-unicode-utf8-character-sets/

od;
65
GG
a7
G8:
09:
F0:
71:
T2:
T3
74
75;
Th:
T
78:
79
80:
81:
82:
83:
84
85:
86:
87:
88:
89:
a0:
91:
92:
93:
94
95:

YT T NXXSE<CHNDOTVOZEICrAR T TIOTMON®PBE

@http:ﬂlDcalhnsUcharacter—test.php op

9G:
a7: a
gg: b
99: C
100:
101:
102:
103:
104
105:
106:
107:
108:
109:
110:
111:
112:
113:
114:
115:
116:
117:
118:
119:
120:
121:
122:
123:
124
125:
126:
127: [

E'-v-'_r-"-uN""-'-':MEﬂCﬂmﬂﬂ'ﬂﬂjg_W—'_'jLﬂ-ﬁmﬂ

' + String.fromCharCo

2117

http://www.asciitable.com/

6.4.2015 All About Unicode, UTF8 & Character Sets - Smashing Magazine

The most important bit of this is the Javascript String.fromCharCode function. It takes a number and turns it into
a character. In fact, the following four lines of HTML and Javascript all produce the same result. They all get
the browser to display character numbers 72, 69, 76, 76 and 79:

HELLO

HELLO

<script>document.write ("HELLO");</script>

<script>document.write (String.fromCharCode (72,69,76,76,79));</script>

Also notice how Firefox displays the unprintable characters (like backspace and escape) in the first column.

Some browsers show blanks or question marks. Firefox squeezes four hexadecimal digits into a small box.

The Eighth Bit

Teleprinters* and stock tickers were quite happy sending 7 bits of information to each other. But the new

fangled microprocessors® of the 1970s preferred to work with powers of 2. They could process 8 bits at a time

and so used 8 bits (aka a byte or octet) to store each character, giving 256 possible values.

An 8 bit character can store a number up to 255, but ASCIl only assigns up to 127. The other values from 128
to 255 are spare. Initially, IBM PCs used the spare slots to represent accented letters, various symbols and
shapes and a handful of Greek letters. For instance, number 200 was the lower left corner of a box: L, and
224 was the Greek letter alpha in lower case: a. This way of encoding the letters was later given the name

code page 4375.

However, unlike ASCII, characters 128-255 were never standardized, and various countries started using the
spare slots for their own alphabets. Not everybody agreed that 224 should display a, not even the Greeks.

This led to the creation of a handful of new_code pages’. For example, in Russian IBM computers using code

page 885, 224 represents the Cyrillic letter . And in Greek code page 737, it is lower case omega: w.

Even then there was disagreement. From the 1980s Microsoft Windows introduced its own code pages. In the
Cyrillic code page Windows-1251, 224 represents the Cyrillic letter a, and A is at 223.

In the late 1990s, an attempt at standardization was made. Fifteen different 8 bit character sets were created
to cover many different alphabets such as Cyrillic, Arabic, Hebrew, Turkish, and Thai. They are called |ISO-
8859-1 up to ISO-8859-168 (number 12 was abandoned). In the Cyrillic ISO-8859-5, 224 represents the letter
p, and 1 is at 207.

So if a Russian friend sends you a document, you really need to know what code page it uses. The document
by itself is just a sequence of numbers. Character 224 could be 4, a or p. Viewed using the wrong code page,
it will look like a bunch of scrambled letters and symbols.

(The situation isn’t quite as bad when viewing Web pages — as Web browsers can usually detect a page’s
character set based on frequency analysis and other such techniques. But this is a false sense of security —
they can and do get it wrong.)

http://www.smashingmagazine.com/2012/06/06/all-about-unicode-utf8-character-sets/ 317

http://en.wikipedia.org/wiki/Microprocessor#8-bit_designs
http://en.wikipedia.org/wiki/Teleprinter
http://en.wikipedia.org/wiki/Code_pages#IBM_PC_.28OEM.29_code_pages
http://en.wikipedia.org/wiki/Iso-8859
http://en.wikipedia.org/wiki/Code_page_437

6.4.2015 All About Unicode, UTF8 & Character Sets - Smashing Magazine

TRYING IT YOURSELF

Code pages are also known as character sets. You can explore these character sets yourself, but you have to

us

e PHP or a similar server side language this time (roughly because the character needs to be in the page

before it gets to the browser). Save these lines in a PHP file and upload it to your server:

<html>

<head>

<meta charset="IS0-8859-5">

</head>

<body>

<style type="text/css">p {float: left; padding: @ 15px; margin: @; font-size: 80%;}</style
>

<?php for ($i=0; $i<256; $i++) echo ($i%32?'':'<p>") . $i . '": ' . chr ($i) . '
"; ?>
</body>

</html>

This will display a table like this:

http://localhost/charactertest.php | =F

< 32: 64 @ 96: 128: @ 160: 192: P 224: p
(3] 33:! 63: A 97: a 120: ¢ 161: E 193: C 225: ¢
(3] 34" 66: B 98: b 130: € 162: R 194: T 226: T
[35: # 67: C 94: c 131: & 163: T 195: ¥ 22Xy
(3] 36: 5 68: D 100:d 132: & 164: € 196: O 228: b
3] 37: % 69: E 101: e 133: @ 165: 5 197: X 220: x
(3] 38: & 70: F 102: f 134: & 166: [198: 1] 230: g
3] 39:" 71: G 103: g 135: & 167: 199: 9 231: 4
[3] 40: [72: H 104: h 136: € 168:] 200: I 232: m
41:) TR Il 105:1 137: % 169: b 201: O1 233: m

432:* 74:] 106: 138: ¢ 170: b 202:b 234: 1
43: + 73: K 107: k 139: @ 171: h 203: BI 235: m

44: 76: L 108:1 140: 4 172: K 204: b 236: B

3 45: - 77 M 109: m 141: @ 173: 2052: 3 237: 2
[46: . 78: N 110: n 142: & 174: ¥ 206: K2 238: 0
] 47 f 79: 0 111: 0 143: & 175: 11 207: ° 230: 7
] 48: 0 80: P 112: p 144: & 176: A 208: a 240: Nz
i 49: 1 81:Q 113: q 145: & 177: B 209:6 241: &
[30: 2 82: R 114: ¢ 146: ¥ 178: B 210: 8 242: §
i 91: 3 83:5 115: s 147: ¥ 179: T 211:r 243:r
- [22: 4 84: T 116: ¢ 148: & 180: T 212: 244: €
: [53:5 85: U 117:u 149: € 181: E 213:e 245: s
: [24: 6 86: V 118: v 150: % 182: K 214: = 246: 1
: [95: 7 87: W 119: w 151: & 183: 3 215: 3 247:1
i 26: 8 88: X 120: x 152: @ 184: ¥ 216:m 248:]
: [57:9 89: Y 121: y 153: & 185: 1 2171 240: m
: [28: : 90: £ 122: z 154: @ 186: K 218: & 250: m
: [20: ; 91: [123: { 155: @ 187: 11 219:n 251:k
60: = 92: 4 124: | 156: @ 188: M 220: M 202: &

61: = 93:] 125: } 157: @ 189: H 221: 253: §

62: = 94. = 126: ~ 158: € 190: O 222: 0 204: ¥

63: 7 95: _ 127 & 159: & 191: I1 223:m 2550: 11

Cyrillic character set ISO-8859-5 viewed in Firefox

The PHP function chr does a similar thing to Javascript’s String.fromCharCode . For example chr(224) embeds

the number 224 into the Web page before sending it to the browser. As we’ve seen above, 224 can mean

many different things. So, the browser needs to know which character set to use to display the 224. That’s

what the first line above is for. It tells the browser to use the Cyrillic character set ISO-8858-5:

http://www.smashingmagazine.com/2012/06/06/all-about-unicode-utf8-character-sets/ 417

6.4.2015 All About Unicode, UTF8 & Character Sets - Smashing Magazine

<meta charset="IS0-8859-5">

If you exclude the charset line, then it will display using the browser’s default. In countries with Latin-based
alphabets (like the UK and US), this is probably ISO-8859-1, in which case 224 is an a with grave accent: a. Try
changing this line to ISO-8859-7 or Windows-1251 and refresh the page. You can also override the character
set in the browser. In Firefox go to View > Character Encoding. Swap between a few to see what effect it has.
If you try to display more than 256 characters, the sequence will repeat.

SUMMARY CIRCA 1990

This is the situation in about 1990. Documents can be written, saved and exchanged in many languages, but
you need to know which character set they use. There is also no easy way to use two or more non-English
alphabets in the same document, and alphabets with more than 256 characters like Chinese and Japanese

have to use entirely different systems.

Finally, the Internet is coming! Internationalization and globalization is about to make this a much bigger issue.

A new standard is required.

Unicode To The Rescue

Starting in the late 1980s, a new standard was proposed — one that would assign a unique number (officially
known as a code point) to every letter in every language, one that would have way more than 256 slots. It was

called Unicode®. It is now in version 6.1 and consists of over 110,000 code points. If you have a few hours to

spare you can watch them all whiz past'©.

The first 128 Unicode code points are the same as ASCII. The range 128-255 contains currency symbols and
other common signs and accented characters (aka characters with diacritical marks'), and much of it is

borrowed ISO-8859-1. After 256 there are many more accented characters. After 880 it gets into Greek
letters, then Cyrillic, Hebrew, Arabic, Indic scripts, and Thai. Chinese, Japanese and Korean start from 11904

with many others in between.

This is great — no more ambiguity — each letter is represented by its own unique number. Cyrillic 11 is always
1071 and Greek a is always 945. 224 is always a, and H is still 72. Note that these Unicode code points are
officially written in hexadecimal preceded by U+. So the Unicode code point H is usually written as U+0048

rather than 72 (to convert from hexadecimal to decimal: 4*16+8=72).

The major problem is that there are more than 256 of them. The characters will no longer fit into 8 bits.
However Unicode is not a character set or code page. So officially that is not the Unicode Consortium’s
problem. They just came up with the idea and left someone else to sort out the implementation. That will be

discussed in the next two sections.

http://www.smashingmagazine.com/2012/06/06/all-about-unicode-utf8-character-sets/ 517

http://en.wikipedia.org/wiki/Diacritic
http://www.babelstone.co.uk/Unicode/unicode.html
http://en.wikipedia.org/wiki/Unicode

6.4.2015 All About Unicode, UTF8 & Character Sets - Smashing Magazine

Unicode Inside The Browser

Unicode does not fit into 8 bits, not even into 16. Although only 110,116 code points are in use, it has the
capability to define up to 1,114,112 of them, which would require 21 bits.

However, computers have advanced since the 1970s. An 8 bit microprocessor is a bit out of date. New
computers now have 64 bit processors, so why can’t we move beyond an 8 bit character and into a 32 bit or
64 bit character?

The first answer is: we can!

A lot of software is written in C or C++, which supports a “wide character”. This is a 32 bit character called
wchar_t . It is an extension of C’s 8 bit char type. Internally, modern Web browsers use these wide characters
(or something similar) and can theoretically quite happily deal with over 4 billion distinct characters. This is

plenty for Unicode. So — internally, modern Web browers use Unicode.

TRYING IT YOURSELF

The Javascript code below is similar to the ASCIl code above, except it goes up to a much higher number. For

each number, it tells the browser to display the corresponding Unicode code point:

<html>
<body>
<style type="text/css">p {float: left; padding: @ 15px; margin: @; font-size: 80%;}</style
>
<script type="text/javascript">
for (var i=0; i<2096; i++)
document.writeln ((i%256?'':'<p>"') + i + ': ' + String.fromCharCode (i) + '
');
</script>
</body>
</html>

It will output a table like this:

http://www.smashingmagazine.com/2012/06/06/all-about-unicode-utf8-character-sets/ 6/17

6.4.2015 All About Unicode, UTF8 & Character Sets - Smashing Magazine

lhostjcharacter-test.php | ¢

256: A 512: A 768: 1024: E 1280: d 1536: [1792: =
257: 3 513: 4 7697 1025: E 1281: 4 1537: [1793

258: A 514: A 7707 1026:{ 1282: i 1538: [@ -1794

259: 3 515: 3 7717 1027:1 1283: 1539: [. -1795

260: A 516: E 7727 1028: € 1284: % 1540: [1796

261: 3 517: & 7737 1029: S 1285: % [l -1541 1797
262: C 518: E 7745 1030: 1 1286: 3, %1542) :1?93
263:¢ 519: é 7757 1031:1 1287: 3 ¥ :1543 " 1799
264: C 520: 1 7767 1032:) 1288: Ju & :1544 -

265: ¢ 521: § 7777 1033: /b 1289:7u % :1545 bl

266: C 522: 1 778° 1034: b 1290:Hs 1.:1546 - 1801

267: ¢ 523: 1 779+ 1035: R 1291: ko B :1547 T:1802
268: C 524: 0 7807 1036: K 1292: G . 11548 T 11803
260: £ 525: 4 781 1037: 1 1293: ¢ [:1540 11804
270: D 526: 0 782" 1038: ¥ 1294: D [:1550 *:1805
271: d 527:6 783" 1039: L 1295: T [-1551 id :180€
272: B 528: R 7847 1040: A 1296: £ [:1552 i :1807
273:4 529: i 7857 1041: 6 1297:¢ [:1553 1 :1808

274:E 530: R 786:° 1042: B 1298: J] [¥ :1554 1809

275: 8 531: F 787 1043:T 1299: 5 [¥ :1555 2:1810
276:E 532: 0 788" 1044: 1300: 7% [-1556 % -1811
277: 8 533: 0 789:" 1045: E 1301: rx %1557 4 -1812
278: E 534: U 790:, 1046: K 1302: K i :1558 51813
279: é 535: 0 791, 1047: 3 1303: [:1559 1814
280: E 536:5 792: 1048: W 1304: 5E [¥ :1560 1815
281: e 537:s 793: 1049: | 1305: e [1561 "lBlE
282:E 538: T 794: 1050: K 1306: Q [} -15862 °,‘18H

283: 8 539:t 795:* 1051: N 1307:q 121563 T

284: G 540:3 796 1052:M 1308:w [H:1564 ~1818
285: § 541: 3 797: 1053: H 1300: w [:1565 1819
286: G 542: H 798; 1054: 0 1310: K fE:1566 1820
287: 9 543: h 799:, 1055: M 1311: & § :1567 — el

288: G 544: 800 1056: P 1312: /h [:1568 q.:1822
289: ¢ 545: d. 801:, 1057: C 1313: m £ :1569 1823
290: G 546: 8 802:, 1058: T 1314: Hy 1570 X:1824

A selection of Unicode code points viewed in Firefox

The screenshot above only shows a subset of the first few thousand code points output by the Javascript. The

selection includes some Cyrillic and Arabic characters, displayed right-to-left.

The important point here is that Javascript runs completely in the Web browser where 32 bit characters are
perfectly acceptable. The Javascript function string.fromCharCode(1071) outputs the Unicode code point 1071
which is the letter 4.

Similarly if you put the HTML entity a into an HTML page, a modern Web browser would display . Numerical
HTML entities also refer to Unicode.

On the other hand, the PHP function chr(1071) would output a forward slash / because the chr function only
deals with 8 bit numbers up to 256 and repeats itself after that, and 1071%256=47 which has been a / since
the 1960s.

UTF-8 To The Rescue

So if browsers can deal with Unicode in 32 bit characters, where is the problem? The problem is in the

sending and receiving, and reading and writing of characters.

http://www.smashingmagazine.com/2012/06/06/all-about-unicode-utf8-character-sets/ 7nm7

6.4.2015 All About Unicode, UTF8 & Character Sets - Smashing Magazine

The problem remains because:

1. A lot of existing software and protocols send/receive and read/write 8 bit characters

2. Using 32 bits to send/store English text would quadruple the amount of bandwidth/space
required

Although browsers can deal with Unicode internally, you still have to get the data from the Web server to the
Web browser and back again, and you need to save it in a file or database somewhere. So you still need a
way to make 110,000 Unicode code points fit into just 8 bits.

There have been several attempts to solve this problem such as UCS2 and UTF-16. But the winner in recent

years is UTF-8, which stands for Universal Character Set Transformation Format 8 bit.

UTF-8 is a clever. It works a bit like the Shift key on your keyboard. Normally when you press the H on your

keyboard a lower case “h” appears on the screen. But if you press Shift first, a capital H will appear.

UTF-8 treats numbers 0-127 as ASCII, 192-247 as Shift keys, and 128-192 as the key to be shifted. For instance,
characters 208 and 209 shift you into the Cyrillic range. 208 followed by 175 is character 1071, the Cyrillic 4.

The exact calculation® is (208%32)*64 + (175%64) = 1071. Characters 224-239 are like a double shift. 226
followed by 190 and then 128" is character 12160: []. 240 and over is a triple shift.

UTF-8 is therefore a multi-byte variable-width encoding. Multi-byte because a single character like f takes
more than one byte to specify it. Variable-width because some characters like H take only 1 byte and some up
to 4.

Best of all it is backward compatible with ASCII. Unlike some of the other proposed solutions, any document
written only in ASCII, using only characters 0-127, is perfectly valid UTF-8 as well — which saves bandwidth
and hassle.

TRYING IT YOURSELF

This is a different experiment. PHP embeds the 6 numbers mentioned above into an HTML page: 72, 208, 175,
226, 190, 128. The browser interprets those numbers as UTF-8, and internally converts them into Unicode
code points. Then Javascript outputs the Unicode values. Try changing the character set from UTF-8 to ISO-
8859-1 and see what happens:

http://www.smashingmagazine.com/2012/06/06/all-about-unicode-utf8-character-sets/ 8/17

http://www.fileformat.info/info/unicode/char/2F80/index.htm
http://en.wikipedia.org/wiki/UTF-8#Examples
http://en.wikipedia.org/wiki/%D0%AF#Computing_codes

6.4.2015 All About Unicode, UTF8 & Character Sets - Smashing Magazine

<html>

<head>

<meta charset="UTF-8">

</head>

<body>

<p>Characters embedded in the page:

<?php echo chr(72).chr(208).chr(175).chr(226).chr(190).chr(128); ?>

<p>Character values according to Javascript:

<script type="text/javascript">

function ShowCharacters (s) {var r='"'; for (var i=0; i<s.length; i++)

r += s.charCodeAt (i) + ': ' + s.substr (i, 1) + '
'; return r;}
document.writeln (ShowCharacters (document.getElementById('chars').innerHTML));
</script>
</body>
</html>

If you are in a hurry, this is what it will look like:

| | localhost/charactert... »

" E (D localhost/character-test.php S| W

Characters embedded in the page:
HAH

Character values according to Javascript:
72:H

1071: A

12160: #

The sequence of numbers above shown using the UTF-8 character set

http://www.smashingmagazine.com/2012/06/06/all-about-unicode-utf8-character-sets/ 917

6.4.2015 All About Unicode, UTF8 & Character Sets - Smashing Magazine

| | localhost/charactert... »

‘ E (D localhost/character-test.php S| WK

Characters embedded in the page:
HD &€

Character values according to Javascript:
72:H

208:b

175:

226: 4

190: %

8304: €

Same sequence of numbers shown using the ISO-8859-1 character set

If you display the page using the UTF-8 character set, you will see only 3 characters: HA[l. If you display it
using the character set ISO-8859-1, you will see six separate characters: HD™a34€ . This is what is happening:

1. On your Web server, PHP is embedding the numbers 72, 208, 175, 226, 190 and 128 into
a Web page

2. The Web page whizzes across the Internet from the Web server to your Web browser

3. The browser receives those numbers and interprets them according to the character set
4. The browser internally represents the characters using their Unicode values
5

. Javascript outputs the corresponding Unicode values

Notice that when viewed as ISO-8859-1 the first 5 numbers are the same (72, 208, 175, 226, 190) as their
Unicode code points. This is because Unicode borrowed heavily from ISO-8859-1 in that range. The last

number however, the euro symbol €, is different. It is at position 128 in ISO-8859-1 and has the Unicode value
8364.

SUMMARY CIRCA 2003

UTF-8 is becoming the most popular international character set on the Internet, superseding the older single-
byte character sets like ISO-8859-5. When you view or send a non-English document, you still need to know

what character set it uses. For widest interoperability, website administrators need to make sure all their web
pages use the UTF-8 character sets.

Perhaps the D looks familiar — it will sometimes show up if you try to view Russian UTF-8 documents. The next
section describes how character sets get confused and end up storing things wrongly in a database.

http://www.smashingmagazine.com/2012/06/06/all-about-unicode-utf8-character-sets/ 10117

6.4.2015 All About Unicode, UTF8 & Character Sets - Smashing Magazine

Lots Of Problems

As long as everybody is speaking UTF-8, this should all work swimmingly. If they aren’t, then characters can
get mangled. To explain way, imagine a typical interaction a website, such as a user making a comment on a
blog post:

1. A Web page displays a comment form
2. The user types a comment and submits.
3. The comment is sent back to the server and saved in a database.

4. The comment is later retrieved from the database and displayed on a Web page

This simple process can go wrong in lots of ways and produce the following types of problems:

HTML ENTITIES

Pretend for a moment that you don’t know anything about character sets — erase the last 30 minutes from
your memory. The form on your blog will probably display itself using the character set ISO-8859-1. This
character set doesn’t know any Russian or Thai or Chinese, and only a little bit of Greek. If you attempt to
copy and paste any into the form and press Submit, a modern browser will try to convert it into HTML
numerical entities like a for 4.

That’s what will get saved in your database, and that’s what will be output when the comment is displayed —
which means it will display fine on a Web page, but cause problems when you try to output it to a PDF or
email, or run text searches for it in a database.

CONFUSED CHARACTERS

How about if you operate a Russian website, and you have not specified a character set in your Web page?
Imagine a Russian user whose default character set is ISO-8859-5. To say “hi”, they might type lNpuset. When
the user presses Submit, the characters are encoded according to the character set of the sending page. In
this case, MpuBeT is encoded as the numbers 191, 224, 216, 210, 213 and 226. Those numbers will get sent
across the Internet to the server, and saved like that into a database.

If somebody later views that comment using ISO-8859-5, they will see the correct text. But if they view using a

different Russian character set like Windows-1251, they will see 1alLITXB. It’s still Russian, but makes no sense.

ACCENTED CHARACTERS WITH LOTS OF VOWELS

If someone views the same comment using ISO-8859-1, they will see ;@004 instead of Mpuser. A longer
phrase like 9 Toxxe paga Bac Bugetb (“nice to see you” in a formal way to a female), submitted as ISO-8859-5,
will show up in ISO-8859-1as 1aPOO abODb. It looks like that because the 128-255 range of ISO-8859-1

contains lots of vowels with accents.

http://www.smashingmagazine.com/2012/06/06/all-about-unicode-utf8-character-sets/ 117

6.4.2015 All About Unicode, UTF8 & Character Sets - Smashing Magazine

So if you see this sort of pattern, it’s probably because text has been entered in a single byte character set
(one of the 1ISO-8859s or Windows ones) and is being displayed as ISO-8859-1. To fix the text, you’ll need to
figure out which character set it was entered as, and resubmit it as UTF-8 instead.

ALTERNATING ACCENTED CHARACTERS

What if the user submitted the comment in UTF-8? In that case the Cyrillic characters which make up the word
MpuBeT would each get sent as 2 numbers each: 208/159, 209/128, 208/184, 208/178, 208/181 and 209/130. If
you viewed that in ISO-8859-1 it would look like: DYNED D*DpuN,.

Notice that every other character is a © or N. Those characters are numbers 208 and 209, and they tell UTF-8
to switch to the Cyrillic range. So if you see a lot of D and N, you can assume that you are looking at Russian
text entered in UTF-8, viewed as ISO-8859-1. Similarly, Greek will have lots of i and I, 206 and 207. And
Hebrew has alternating x, number 215.

VOWELS BEFORE A POUND AND COPYRIGHT SIGN

A very common issue in the UK is the currency symbol £ getting converted into A£. This is exactly the same
issue as above with a coincidence thrown in to add confusion. The £ symbol has the Unicode and ISO-8859-1
value of 163. Recall that in UTF-8 any character over 127 is represented by a sequence of two or more
numbers. In this case, the UTF-8 sequence is 194/163. Mathematically, this is because (194%32)*64 + (163%64)
=163.

Visually it means that the if you view the UTF-8 sequence using ISO-8859-1, it appears to gain a A which is
character 194 in ISO-8859-1. The same thing happens for all Unicode code points 161-191, which includes ©
and ® and ¥.

So if your € or © suddenly inherit a A, it is because they were entered as UTF-8.

BLACK DIAMOND QUESTION MARKS

How about the other way around? If you enter NpuseT as ISO-8859-5, it will get saved as the numbers shown
above: 191, 224, etc. If you then try to view this as UTF-8, you may well see lots of question marks inside black

diamonds: €. The browser displays these when it can’t make sense of the numbers it is reading.

UTF-8 is self-synchronzising. Unlike other multi-byte character encodings, you always know where you are
with UTF-8. If you see a number 192-247, you know you are at the beginning of a multi-byte sequence. If you
see 128-191 you know you are in the middle of one. There’s no danger of missing the first number and
garbling the rest of the text.

This means that in UTF-8, the sequence 191 followed by 224 will never occur naturally, so the browser doesn’t

know what to do with it and displays € € instead.

This can also cause £ and © related problems. £50 in ISO-8859-1 is the numbers 163, 53 and 48. The 53 and
48 cause no issues, but in UTF-8, 163 can never occur by itself, so this will show up as 50. Similarly if you
see 2012, it is probably because ©2012 was input as ISO-8859-1 but is being displayed as UTF-8.

http://www.smashingmagazine.com/2012/06/06/all-about-unicode-utf8-character-sets/ 12117

6.4.2015 All About Unicode, UTF8 & Character Sets - Smashing Magazine

BLANKS, QUESTION MARKS AND BOXES

Even if they are fully up-to-speed with UTF-8 and Unicode, a browser still may not know how to display a
character. The first few ASCII characters 1-31 are mostly control sequences for teleprinters (things like
Acknowledge and Stop). If you try to display them, a browser might show a ? or a blank or a box with tiny
numbers inside it.

Also, Unicode defines over 110,000 characters. Your browser may not have the correct font to display all of
them. Some of the more obscure characters may also get shown as ? or blank or a small box. In older
browsers, even fairly common non-English characters may show as boxes.

Older browsers may also behave differently for some of the issues above, showing ? and blank boxes more

often.

DATABASES

The discussion above has avoided the middle step in the process — saving data to a database. Databases like
MySQL can also specify a character set for a database, table or column. But it is less important that the Web

pages’ character set.

When saving and retrieving data, MySQL deals just with numbers. If you tell it to save number 163, it will. If you
give it 208/159 it will save those two numbers. And when you retrieve the data, you’ll get the same two
numbers back.

The character set becomes more important when you use database functions to compare, convert and
measure the data. For example, the LENGTH of a field may depend on its character set, as do string
comparisons using LIKE and - .The method used to compare strings is called a collation’®.

Character sets and collations in MySQL are an in-depth subject. It’s not simply a case of changing the
character set of a table to UTF-8. There are further SQL commands to take into account to make sure the data

goes in and out in the right format as well. This blog' is a good starting point.

TRYING IT YOURSELF

The following PHP and Javascript code allows you to experiment with all these issues. You can specify which

character set is used to input and output text, and you can see what the browser thinks about it too.

http://www.smashingmagazine.com/2012/06/06/all-about-unicode-utf8-character-sets/ 13117

http://blog.tremend.ro/2006/09/26/mysql-php-and-utf8/
http://dev.mysql.com/doc/refman/5.5/en/charset-general.html

6.4.2015 All About Unicode, UTF8 & Character Sets - Smashing Magazine

<?php
$charset = $ POST['charset']; if (!$charset) $charset = 'IS0-8859-1';
$string = $ POST['string'];
if ($string) {
echo '<p>This is what PHP thinks you entered:
';
for ($i=0; $i<strlen($string); $i++) {$c=substr ($string,$i,1); echo ord ($c).': '

$c.'
";}
}
?>
<html>
<head>
<meta charset="<?=$charset?>">
</head>
<body>
<form method="post">
<input name="lastcharset" type="hidden" value="<?php echo $charset?>"/>
Form was submitted as: <?php echo $_POST['lastcharset']?>

Text is displayed as: <?php echo $charset?>

Text will be submitted as: <?php echo $charset?>

Copy and paste or type here:
<input name="string" type="text" size="20" value="<?php echo $string?>"/>

Next page will display as:
<select name="charset"><option>IS0-8859-1<option>IS0-8859-5
<option>Windows-1251<option>IS0-8859-7<option>UTF-8</select>

<input type="submit" value="Submit" onclick="ShowCharacters (this.form.string.value); retu
rn 1;"/>
</form>
<script type="text/javascript">
function ShowCharacters (s) {

var r='You entered:';

for (var i=0; i<s.length; i++) r += 'n' + s.charCodeAt (i) + ': ' + s.substr (i, 1);

alert (r);
}
</script>
</body>
</html>

This is an example of the code in action. The numbers at the top are the numerical values of each of the

characters and their representation (when viewed individually) in the current character set:

http://www.smashingmagazine.com/2012/06/06/all-about-unicode-utf8-character-sets/ 14117

6.4.2015 All About Unicode, UTF8 & Character Sets - Smashing Magazine

| | localhost/charactert... »

‘ E (D localhost/character-test.php S| WK

Thus is what PHP thinks you entered:
163: @

53:5

48:0

Form was submitted as: ISO-8859-1

Text 1s displayed as: UTF-8

Text will be submitted as: UTF-8

Copy and paste or type here: €50

Next page will display as: [I1S0-88591 v

Example of inputting and output in different character sets. This shows a £ sign turning into a € in Google Chrome.

The page above shows the previous, current and future character sets. You can use this code to quickly see
how text can get really mangled. For example, if you pressed Submit again above, the has Unicode code
point 65533 which is 239/191/189 in UTF-8 and will be displayed as 13250 in ISO-8859-1. So if you ever get £
symbols turning into i35, that is probably the route they took.

Note that the select box at the bottom will change back to ISO-8859-1 each time.

One Solution

All the encoding problems above are caused by text being submitted in one character set and viewed in
another. The solution is to make sure that every page on your website uses UTF-8. You can do this with one
of these lines immediately after the <head> tag:

<meta charset="UTF-8">
<meta http-equiv="Content-type" content="text/html; charset=UTF-8">

It has to be one of the first things in your Web page, as it will cause the browser to look again at the page in a

whole new light. For speed and efficiency, it should do this as soon as possible.

You can also specify UTF-8 in your MySQL tables, though to fully use this feature, you’ll need to delve deeper.

http://www.smashingmagazine.com/2012/06/06/all-about-unicode-utf8-character-sets/ 15117

6.4.2015 All About Unicode, UTF8 & Character Sets - Smashing Magazine

Note that users can still override the character set in their browsers. This is rare, but does mean that this
solution is not guaranteed to work. For extra safety, you could implement a back-end check to ensure data is

arriving in the correct format.

EXISTING WEBSITES

If your website has already been collecting text in a variety of languages, then you will also need to convert
your existing data into UTF-8. If there is not much of it, you can use a PHP page like the one above to figure

out the original character set, and use the browser to convert the data into UTF-8.

If you have lots of data in various character sets, you'll need to first detect the character set and then convert

it. In PHP you can use mb_detect encoding’ to detect and iconv'™® to convert. Reading the comments for

mb_detect_encoding , it looks like quite a fussy function, so be sure to experiment to make sure you are using it
properly and getting the right results.

A potentially misleading function is utf8 decode™. It turns UTF-8 into ISO-8859-1. Any characters not available
in ISO-8859-1 (like Cyrillic, Greek, Thai, etc) are turned into question marks. It's misleading because you might
have expected more from it, but it does the best it can.

Summary

This article has relied heavily on numbers and has tried to leave no stone unturned. Hopefully it has provided
an exhaustive understanding of character sets, Unicode, UTF-8 and the various problems that can arise. The

morals of the story are:

¢ You need to know the character set in order to make sense of non-Latin text
* Internally, browsers use Unicode to represent characters

¢ Make sure all your Web pages specify the UTF-8 character set

For a slightly different approach to this subject, this 2003 character set article?® is excellent. Thank you for

sticking with this epic journey.

FOOTNOTES

1 http://en.wikipedia.org/wiki/ASCII

2 http://www.presidency.ucsb.edu/ws/index.php?pid=28724#axzz1s2VIkMsP

3 http://www.asciitable.com/

4 http://en.wikipedia.org/wiki/Teleprinter

http://www.smashingmagazine.com/2012/06/06/all-about-unicode-utf8-character-sets/ 16/17

http://www.joelonsoftware.com/articles/Unicode.html
http://php.net/manual/en/function.utf8-decode.php
http://www.php.net/manual/en/function.mb-detect-encoding.php
http://www.php.net/manual/en/function.iconv.php

6.4.2015 All About Unicode, UTF8 & Character Sets - Smashing Magazine

5 http://en.wikipedia.org/wiki/Microprocessor#8-bit_designs

6 http://en.wikipedia.org/wiki/Code_page_ 437

7 http://en.wikipedia.org/wiki/Code_pages#IBM_PC .280EM.29_code_pages

8 http://en.wikipedia.org/wiki/lso-8859

9 http://en.wikipedia.org/wiki/Unicode

10 http://www.babelstone.co.uk/Unicode/unicode.html

11 http://en.wikipedia.org/wiki/Diacritic

12 http://en.wikipedia.org/wiki/%D0%AF#Computing _codes

13 http://en.wikipedia.org/wiki/UTF-8#Examples

14 http://www.fileformat.info/info/unicode/char/2F80/index.htm

15 http://dev.mysql.com/doc/refman/5.5/en/charset-general.html

16 http://blog.tremend.ro/2006/09/26/mysql-php-and-utf8/

17 http://www.php.net/manual/en/function.mb-detect-encoding.php

18 http://www.php.net/manual/en/function.iconv.php

19 http://php.net/manual/en/function.utf8-decode.php

20 http://www.joelonsoftware.com/articles/Unicode.html

Paul Tero

Paul Tero is an experienced PHP programmer and server administrator. He

developed the Stockashop ecommerce system in 2005 for Sensable Media. He

now works part-time maintaining and developing Stockashop, and the rest of the
time freelancing from a corner of his living room, and sleeping, eating, having fun,

etc. He has also written numerous other open sourcish scripts and programs.

With a commitment to quality content for the design community. Founded by Vitaly Friedman and Sven

Lennartz. 2006-2015. Made in Germany. & — — .http://www.smashingmagazine.com

http://www.smashingmagazine.com/2012/06/06/all-about-unicode-utf8-character-sets/ 1717

http://www.stockashop.co.uk/
http://www.tero.co.uk/
http://www.smashingmagazine.com/author/paul-tero/?rel=author

27.4.2015 www.cl.cam.ac.uk/~mgk25/ucs/utf-8-history.txt

Subject: UTF-8 history

From: "Rob 'Commander' Pike" <r (at) google.com>
Date: Wed, 30 Apr 2003 22:32:32 -0700 (Thu ©6:32 BST)
To: mkuhn (at) acm.org, henry (at) spsystems.net

Cc: ken (at) entrisphere.com

Looking around at some UTF-8 background, I see the same incorrect
story being repeated over and over. The incorrect version is:

1. IBM designed UTF-8.

2. Plan 9 implemented it.
That's not true. UTF-8 was designed, in front of my eyes, on a
placemat in a New Jersey diner one night in September or so 1992.

What happened was this. We had used the original UTF from ISO 10646
to make Plan 9 support 16-bit characters, but we hated it. We were
close to shipping the system when, late one afternoon, I received a
call from some folks, I think at IBM - I remember them being in Austin
- who were in an X/Open committee meeting. They wanted Ken and me to
vet their FSS/UTF design. We understood why they were introducing a
new design, and Ken and I suddenly realized there was an opportunity
to use our experience to design a really good standard and get the
X/Open guys to push it out. We suggested this and the deal was, if we
could do it fast, OK. So we went to dinner, Ken figured out the
bit-packing, and when we came back to the lab after dinner we called
the X/Open guys and explained our scheme. We mailed them an outline
of our spec, and they replied saying that it was better than theirs (I
don't believe I ever actually saw their proposal; I know I don't
remember it) and how fast could we implement it? I think this was a
Wednesday night and we promised a complete running system by Monday,
which I think was when their big vote was.

So that night Ken wrote packing and unpacking code and I started
tearing into the C and graphics libraries. The next day all the code
was done and we started converting the text files on the system
itself. By Friday some time Plan 9 was running, and only running,
what would be called UTF-8. We called X/Open and the rest, as they
say, is slightly rewritten history.

Why didn't we just use their FSS/UTF? As I remember, it was because
in that first phone call I sang out a list of desiderata for any such
encoding, and FSS/UTF was lacking at least one - the ability to
synchronize a byte stream picked up mid-run, with less that one
character being consumed before synchronization. Becuase that was
lacking, we felt free - and were given freedom - to roll our own.

I think the "IBM designed it, Plan 9 implemented it" story originates
in RFC2279. At the time, we were so happy UTF-8 was catching on we
didn't say anything about the bungled history. Neither of us is at
the Labs any more, but I bet there's an e-mail thread in the archive
there that would support our story and I might be able to get someone
to dig it out.

So, full kudos to the X/Open and IBM folks for making the opportunity
happen and for pushing it forward, but Ken designed it with me
cheering him on, whatever the history books say.

-rob

Date: Sat, 07 Jun 2003 18:44:05 -0700

From: "Rob ~Commander' Pike" <r (at) google.com>

To: Markus Kuhn <Markus.Kuhn (at) cl.cam.ac.uk>

cc: henry (at) spsystems.net, ken (at) entrisphere.com,
Greger Leijonhufvud <greger (at) friherr.com>

Subject: Re: UTF-8 history

http://www .cl.cam.ac.uk/~mgk25/ucs/utf-8-history.txt 110

27.4.2015 www.cl.cam.ac.uk/~mgk25/ucs/utf-8-history.txt

I asked Russ Cox to dig through the archives. I have attached his message.
I think you'll agree it supports the story I sent earlier. The mail we

sent to X/Open (I believe Ken did the editing and mailing of that document)
includes a new desideratum #6 about discovering character boundaries.

We'll never know how much the original X/Open proposal influenced us;

the two proposals are very different but do share some characteristics.

I don't remember looking at it in detail, but it was a long time ago.

I very clearly remember Ken writing on the placemat and wished we had

kept it!

-rob

From: Russ Cox <rsc (at) plan9.bell-labs.com>
To: r (at) google.com

Subject: utf digging

Date-Sent: Saturday, June 07, 2003 7:46 PM -0400

bootes's /sys/src/libc/port/rune.c changed from the
division-heavy old utf on sep 4 1992.

the version that made it into the dump

is dated 19:51:55. it was commented

the next day but otherwise remained unchanged

until nov 14 1996, when runelen was sped up by
inspecting the rune explicitly rather than

using runetochar's return value. may 26 2001

was the next and last change, to add runenlen.

here are some mails from your mail boxes

that turn up by grepping for utf. the first

refers to utf.c, which is a copy of a wctomb and mbtowc
that handle the full 6-byte utf-8 encoding of 32-bit runes.
it's quite ugly, with all the logic in control flow.

i assume it became the code in the proposal

as a result of that first mail.

in /usr/ken/utf/xutf i found a copy of what

appears to be the original not-self-synchronizing
encoding proposal, with the utf-8 scheme tacked
onto the end (starting at "We define 7 byte types").
that's also below. the version below is the first,
dated sep 2 23:44:10. it went through a number of
edits to become the second mail below by the
morning of Sep 8.

the mail log shows that second mail going out
as well as taking a while to come back to ken.

helix: Sep 8 ©3:22:13: ken: upas/sendmail: remote inet!xopen.co.uk!xojig
>From ken Tue Sep 8 ©3:22:07 EDT 1992 (xojig@xopen.co.uk) 6833

helix: Sep 8 ©3:22:13: ken: upas/sendmail: delivered rob From ken Tue Sep
8 03:22:07 EDT 1992 6833

helix: Sep 8 ©3:22:16: ken: upas/sendmail: remote pyxis!andrew From ken
Tue Sep 8 ©3:22:07 EDT 1992 (andrew) 6833

helix: Sep 8 ©3:22:19: ken: upas/sendmail: remote coma!dmr From ken Tue
Sep 8 ©3:22:07 EDT 1992 (dmr) 6833

helix: Sep 8 ©3:25:52: ken: upas/sendmail: delivered rob From ken Tue Sep
8 03:24:58 EDT 1992 141

helix: Sep 8 ©3:36:13: ken: upas/sendmail: delivered ken From ken Tue Sep
8 03:36:12 EDT 1992 6833

enjoy.

http://www .cl.cam.ac.uk/~mgk25/ucs/utf-8-history.txt 2110

27.4.2015 www.cl.cam.ac.uk/~mgk25/ucs/utf-8-history.txt

>From ken Fri Sep 4 ©3:37:39 EDT 1992

you might want to look at
/usr/ken/utf/utf.c

and see if you can make it prettier.

>From ken Tue Sep 8 ©3:22:07 EDT 1992

Here is our modified FSS-UTF proposal. The words are the same as on
the previous proposal. My apologies to the author. The code has been
tested to some degree and should be pretty good shape. We have
converted Plan 9 to use this encoding and are about to issue a
distribution to an initial set of university users.

File System Safe Universal Character Set Transformation Format (FSS-UTF)

With the approval of ISO/IEC 10646 (Unicode) as an international
standard and the anticipated wide spread use of this universal coded
character set (UCS), it is necessary for historically ASCII based
operating systems to devise ways to cope with representation and
handling of the large number of characters that are possible to be
encoded by this new standard.

There are several challenges presented by UCS which must be dealt with
by historical operating systems and the C-language programming
environment. The most significant of these challenges is the encoding
scheme used by UCS. More precisely, the challenge is the marrying of
the UCS standard with existing programming languages and existing
operating systems and utilities.

The challenges of the programming languages and the UCS standard are
being dealt with by other activities in the industry. However, we are
still faced with the handling of UCS by historical operating systems
and utilities. Prominent among the operating system UCS handling
concerns is the representation of the data within the file system. An
underlying assumption is that there is an absolute requirement to
maintain the existing operating system software investment while at
the same time taking advantage of the use the large number of
characters provided by the UCS.

UCS provides the capability to encode multi-lingual text within a
single coded character set. However, UCS and its UTF variant do not
protect null bytes and/or the ASCII slash ("/") making these character
encodings incompatible with existing Unix implementations. The
following proposal provides a Unix compatible transformation format of
UCS such that Unix systems can support multi-lingual text in a single
encoding. This transformation format encoding is intended to be used
as a file code. This transformation format encoding of UCS is
intended as an intermediate step towards full UCS support. However,
since nearly all Unix implementations face the same obstacles in
supporting UCS, this proposal is intended to provide a common and
compatible encoding during this transition stage.

Goal/Objective

With the assumption that most, if not all, of the issues surrounding
the handling and storing of UCS in historical operating system file
systems are understood, the objective is to define a UCS
transformation format which also meets the requirement of being usable
on a historical operating system file system in a non-disruptive
manner. The intent is that UCS will be the process code for the
transformation format, which is usable as a file code.

http://www .cl.cam.ac.uk/~mgk25/ucs/utf-8-history.txt 3/10

27.4.2015 www.cl.cam.ac.uk/~mgk25/ucs/utf-8-history.txt
Criteria for the Transformation Format

Below are the guidelines that were used in defining the UCS
transformation format:

1) Compatibility with historical file systems:

Historical file systems disallow the null byte and the ASCII
slash character as a part of the file name.

2) Compatibility with existing programs:

The existing model for multibyte processing is that ASCII does
not occur anywhere in a multibyte encoding. There should be
no ASCII code values for any part of a transformation format
representation of a character that was not in the ASCII
character set in the UCS representation of the character.

3) Ease of conversion from/to UCS.

4) The first byte should indicate the number of bytes to
follow in a multibyte sequence.

5) The transformation format should not be extravagant in
terms of number of bytes used for encoding.

6) It should be possible to find the start of a character
efficiently starting from an arbitrary location in a byte
stream.

Proposed FSS-UTF

The proposed UCS transformation format encodes UCS values in the range
[0,0x7fffffff] using multibyte characters of lengths 1, 2, 3, 4, 5,
and 6 bytes. For all encodings of more than one byte, the initial
byte determines the number of bytes used and the high-order bit in
each byte is set. Every byte that does not start 1Oxxxxxx is the
start of a UCS character sequence.

An easy way to remember this transformation format is to note that the
number of high-order 1's in the first byte signifies the number of
bytes in the multibyte character:

Bits Hex Min Hex Max Byte Sequence in Binary

1 7 00000000 00VO7f OvVVVVVV

2 11 00000080 ©RVR7FF 110vvvvv 1lOvvvvvv

3 16 00000800 OROOFFFF 1110vvvv 1Ovvvvvv 1Ovvvvvv

4 21 00010000 O01FFFFF 11110vvv 1Ovvvvvv 1lOvvvvvv 10vvvvvv

5 26 00200000 O3FFFFFF 111110vv 10vvvvvv 1lOvvvvvv 10vvvvvv 10vvvvvv
6 31 04000000 7FFFFFFF 1111110v 10vvvvvv 1lOvvvvvv 10vvvvvv 10vvvvvv
10vvvvvv

The UCS value is just the concatenation of the v bits in the multibyte
encoding. When there are multiple ways to encode a value, for example
UCS 0, only the shortest encoding is legal.

Below are sample implementations of the C standard wctomb() and
mbtowc () functions which demonstrate the algorithms for converting
from UCS to the transformation format and converting from the
transformation format to UCS. The sample implementations include error
checks, some of which may not be necessary for conformance:

http://www .cl.cam.ac.uk/~mgk25/ucs/utf-8-history.txt 4/10

27.4.2015

www.cl.cam.ac.uk/~mgk25/ucs/utf-8-history.txt

typedef
struct
{
int cmask;
int cval;
int shift;
long Imask;
long lval;
} Tab;
static
Tab tab[] =
{
0x80, 0x00, 0*6, Ox7F, 0,
OXEQ, oxCo, 1*6, OxX7FF, 0x80,
OxFo, OXxEQ, 2*6, OXFFFF, 0x800,
OXF8, OxFo, 3*6, OX1FFFFF, 0x10000,
OxFC, OXF8, 4*6, Ox3FFFFFF, 0x200000,
OXFE, OXFC, 5*6, OX7FFFFFFF, 0x4000000,
9,
s
int
mbtowc(wchar_t *p, char *s, size t n)
{
long 1;
int c9, ¢, nc;
Tab *t;
if(s == 0)
return 0;
nc = 0;
if(n <= nc)
return -1;
CO = *s & Oxff;
1 = co;
for(t=tab; t->cmask; t++) {
nc++;
if((co & t->cmask) == t->cval) {
1 &= t->1lmask;
if(l < t->1lval)
return -1;
*p o= 1;
return nc;
}
if(n <= nc)
return -1;
S++;
c = (*s ™ Ox80) & OxFF;
if(c & oxCo)
return -1;
1 = (1<<6) | c;
}
return -1;
¥
int
wctomb(char *s, wchar_t wc)
{
long 1;
int c, nc;
Tab *t;
if(s == 0)

http://www .cl.cam.ac.uk/~mgk25/ucs/utf-8-history.txt

/*
/*
/*
/*
/*
/*
/*

sequence
sequence
sequence
sequence
sequence
sequence
table */

*/
*/
*/
*/
*/
*/

510

27.4.2015 www.cl.cam.ac.uk/~mgk25/ucs/utf-8-history.txt

return 0;

1 = wc;

nc = 90;

for(t=tab; t->cmask; t++) {
Nnc++;

if(1l <= t->1mask) {
c = t->shift;
*s = t->cval | (1>>c);
while(c > 9) {

cC -= 6;
S++;
*s = Ox80 | ((1>>c) & Ox3F);
}
return nc;
}
}
return -1;

}

>From ken Tue Sep 8 ©3:24:58 EDT 1992

i mailed it out, but it went into a black hole.
i didnt get my copy. it must be hung up on the
internat address with coma down or something.

>From ken Tue Sep 8 ©3:42:43 EDT 1992
i finally got my copy.

--- /usr/ken/utf/xutf from dump of Sep 2 1992 ---

File System Safe Universal Character Set Transformation Format (FSS-UTF)

With the approval of ISO/IEC 10646 (Unicode) as an international
standard and the anticipated wide spread use of this universal coded
character set (UCS), it is necessary for historically ASCII based
operating systems to devise ways to cope with representation and
handling of the large number of characters that are possible to be
encoded by this new standard.

There are several challenges presented by UCS which must be dealt with
by historical operating systems and the C-language programming
environment. The most significant of these challenges is the encoding
scheme used by UCS. More precisely, the challenge is the marrying of
the UCS standard with existing programming languages and existing
operating systems and utilities.

The challenges of the programming languages and the UCS standard are
being dealt with by other activities in the industry. However, we are
still faced with the handling of UCS by historical operating systems and
utilities. Prominent among the operating system UCS handling concerns 1is
the representation of the data within the file system. An underlying
assumption is that there is an absolute requirement to maintain the
existing operating system software investment while at the same time
taking advantage of the use the large number of characters provided by
the UCS.

UCS provides the capability to encode multi-lingual text within a single
coded character set. However, UCS and its UTF variant do not protect
null bytes and/or the ASCII slash ("/") making these character encodings
incompatible with existing Unix implementations. The following proposal
provides a Unix compatible transformation format of UCS such that Unix
systems can support multi-lingual text in a single encoding. This

http://www .cl.cam.ac.uk/~mgk25/ucs/utf-8-history.txt 6/10

27.4.2015 www.cl.cam.ac.uk/~mgk25/ucs/utf-8-history.txt

transformation format encoding is intended to be used as a file code.
This transformation format encoding of UCS is intended as an
intermediate step towards full UCS support. However, since nearly all
Unix implementations face the same obstacles in supporting UCS, this
proposal is intended to provide a common and compatible encoding during
this transition stage.

Goal/Objective

With the assumption that most, if not all, of the issues surrounding the
handling and storing of UCS in historical operating system file systems
are understood, the objective is to define a UCS transformation format
which also meets the requirement of being usable on a historical
operating system file system in a non-disruptive manner. The intent is
that UCS will be the process code for the transformation format, which
is usable as a file code.

Criteria for the Transformation Format

Below are the guidelines that were used in defining the UCS
transformation format:

1) Compatibility with historical file systems:

Historical file systems disallow the null byte and the ASCII
slash character as a part of the file name.

2) Compatibility with existing programs:

The existing model for multibyte processing is that ASCII does
not occur anywhere in a multibyte encoding. There should be no
ASCII code values for any part of a transformation format
representation of a character that was not in the ASCII character
set in the UCS representation of the character.

3) Ease of conversion from/to UCS.

4) The first byte should indicate the number of bytes to follow in a
multibyte sequence.

5) The transformation format should not be extravagant in terms of
number of bytes used for encoding.

Proposed FSS-UTF

The proposed UCS transformation format encodes UCS values in the range
[0,0x7fffffff] using multibyte characters of lengths 1, 2, 3, 4, and 5
bytes. For all encodings of more than one byte, the initial byte
determines the number of bytes used and the high-order bit in each byte
is set.

An easy way to remember this transformation format is to note that the
number of high-order 1's in the first byte is the same as the number of
subsequent bytes in the multibyte character:

Bits Hex Min Hex Max Byte Sequence in Binary
7 00000000 0PLPLLO7f 0zzzzzzZ
13 00000080 0000207f 10zzzzzz 1lyyyyyyy
19 00002080 0008207f 110zzzzz 1lyyyyyyy 1IXXXXXXX
4 25 00082080 0208207f 1110zzzz lyyyyyyy IXXXXXXX lwwwwwww

wN R

http://www .cl.cam.ac.uk/~mgk25/ucs/utf-8-history.txt 7110

27.4.2015 www.cl.cam.ac.uk/~mgk25/ucs/utf-8-history.txt
5 31 02082080 7fffffff 11110zzz 1lyyyyyyy 1IxXXXXXxX lwwwwwww 1vvvvvvv

The bits included in the byte sequence is biased by the minimum value
so that if all the z's, y's, x's, w's, and v's are zero, the minimum
value is represented. 1In the byte sequences, the lowest-order encoded
bits are in the last byte; the high-order bits (the z's) are in the
first byte.

This transformation format uses the byte values in the entire range of
ox80 to Oxff, inclusive, as part of multibyte sequences. Given the

assumption that at most there are seven (7) useful bits per byte, this
transformation format is close to minimal in its number of bytes used.

Below are sample implementations of the C standard wctomb() and
mbtowc() functions which demonstrate the algorithms for converting from
UCS to the transformation format and converting from the transformation
format to UCS. The sample implementations include error checks, some
of which may not be necessary for conformance:

#define OFF1 0x0000080
#tdefine OFF2 0x0002080
#tdefine OFF3 0x0082080
#tdefine OFF4 0x2082080

int wctomb(char *s, wchar_t wc)

{
if (s == 0)
return 9; /* no shift states */
#ifdef wchar_t_is_signed
if (wc < 9)
goto bad;
#tendif
if (wc <= ox7f) /* fits in 7 bits */
{
s[@] = wc;
return 1;
}
if (wc <= Ox1fff + OFF1) /* fits in 13 bits */
{
wc -= OFF1;

s[0] = 0x80 | (wc >> 7);
s[1] = ox80 | (wc & Ox7f);

return 2;
}
if (wc <= Ox7ffff + OFF2) /* fits in 19 bits */
{
wc -= OFF2;
s[@] = oxco | (wc >> 14);
s[1] = ox80 | ((wc >> 7) & ox7f);
s[2] = ox80 | (wc & @x7f);
return 3;
}
if (wc <= ox1ffffff + OFF3) /* fits in 25 bits */
{
wc -= OFF3;
s[@] = oxed | (wc >> 21);
s[1] = 0x80 | ((wc >> 14) & Ox7f);
s[2] = ox80 | ((wc >> 7) & ox7f);
s[3] = ox80 | (wc & Ox7f);
return 4;
}

#if ldefined(wchar_t_is_signed) || defined(wchar_t_is_more_than_32_bits)
if (wc > OxX7Fffffff)
goto bad;
#tendif

http://www .cl.cam.ac.uk/~mgk25/ucs/utf-8-history.txt 8/10

27.4.2015 www.cl.cam.ac.uk/~mgk25/ucs/utf-8-history.txt

wc -= OFF4;
s[@] = oxfo | (wc >> 28);
s[1] = ox80 | ((wc >> 21) & Ox7f);
s[2] = ox80 | ((wc >> 14) & Ox7f);
s[3] = 0x80 | ((wc >> 7) & ox7f);
s[4] = 0x80 | (wc & Ox7f);
return 5;

bad:;
errno = EILSEQ;
return -1;

}

int mbtowc(wchar_t *p, const char *s, size_ t n)

{

unsigned char *uc; /* so that all bytes are nonnegative */

if ((uc = (unsigned char *)s) == @)
return 0; /* no shift states */
if (n == 09)
return -1;
if ((*p = uc[@]) < 0x80)
return uc[0] != '\@'; /* return @ for '\0', else 1 */
if (uc[@] < ©oxce)
{
if (n < 2)
return -1;
if (uc[1] < ©ox89)
goto bad;
*p &= Ox3f;
*p <<= 7;
*p |= uc[1] & Ox7f;
*p += OFF1;
return 2;

if (uc[@] < ©oxe0)
{
if (n < 3)
return -1;
if (uc[1] < ©ex80 || uc[2] < @x89)

goto bad;
*p &= Ox1f;
*p <<= 14;

*p |= (uc[1l] & Ox7f) << 7;
*p |= uc[2] & Ox7f;

*p += OFF2;

return 3;

if (uc[@] < oxfe)

{
if (n < 4)
return -1;
if (uc[1] < ox80 || uc[2] < ©x80 || uc[3] < ox80)
goto bad;
*p &= Ox0Of;
*p <<= 21;
*p |= (uc[1] & Ox7f) << 14;
*p |= (uc[2] & Ox7f) << 7;
*p |= uc[3] & Ox7f;
*p += OFF3;
return 4;
}

if (uc[@] < oxf8)

if (n < 5)

http://www .cl.cam.ac.uk/~mgk25/ucs/utf-8-history.txt 9/10

27.4.2015

i

*
*
*
*
*
*

www.cl.cam.ac.uk/~mgk25/ucs/utf-8-history.txt

return -1;

f (uc[1] < @x80 || uc[2] < ©x80 || uc[3] < ©x80 || uc[4] < ©x80)

goto bad;
p &= 0x07;
p <<= 28;

p |= (uc[1] & Ox7f) << 21;
p |= (uc[2] & Ox7f) << 14;

p |= (uc[3] & Ox7f) << 7;

p |= uc[4] & Ox7f;

f (((*p += OFF4) & ~(wchar_t)ox7fffffff) == @)

i
return 5;

}
bad:;

errno = EILSEQ;

return -1;
¥
We define 7 byte types:
TO OXXXXXXX 7 free bits
TX 1OXXXXXX 6 free bits
T1 110XXXXX 5 free bits
T2 1110xxxX 4 free bits
T3 11110xxX 3 free bits
T4 111110xx 2 free bits
T5 111111xx 2 free bits

Encoding is as follows.

>From he
00000000
00000080
00000800
00010000
00200000
04000000

Some not

1. The 2 byte sequence has 2711 codes, yet only 2711-277
are allowed. The codes in the range 0-7f are illegal.

I think this is preferable to a pile of magic additive
constants for no real benefit. Similar comment applies
to all of the longer sequences.

2. The 4, 5, and 6 byte sequences are only there for
political reasons. I would prefer to delete these.

3. The 6 byte sequence covers 32 bits, the FSS-UTF

X

es:

Thru hex
0000007
000RO7FF
OOOOFFFF
OO1FFFFF
O3FFFFFF
FFFFFFFF

proposal only covers 31.

4. All of the sequences synchronize on any byte that is

not a Tx

byte.

http://www .cl.cam.ac.uk/~mgk25/ucs/utf-8-history.txt

Sequence
TO

Tl TX

T2 Tx Tx
T3 Tx Tx
T4 Tx Tx
T5 Tx Tx

TX
Tx Tx
TX Tx Tx

Bits

11
16
21
26
32

10/10

